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ABSTRACT 

This paper describes the development, termination and performance of next generation 
optical backplane interconnect components.  This low cost, dense optical interconnect 
technology combined with recent advances in 10G/lane and beyond, miniature imbedded 
Tx/Rx devices is driving bandwidth density to unprecedented levels. 
A monolithic, multi-fiber ferule with integrated collimating lenses was designed with the 
same overall footprint as a traditional MT-type, multi-fiber rectangular ferrule.   The new 
optical ferrule was designed with precision micro holes for alignment to the lens array 
allowing for incorporation of multiple rows of fibers into single ferrule unit.  The design 
supports up to four rows with as many as 16 fibers per row for a total potential lane count 
of up to 64 within in a single ferrule. 
A low cost termination is achieved by securing precision-cleaved fiber arrays into the 
rear of the ferrule with a quick-cure, index matched, UV light activated epoxy.  The 
elimination of a polished fiber array greatly reduces the cost and complexity associated 
with physical contact based multi-fiber interconnects.   With the same overall footprint as 
an MT ferrule, the new, lens-based ferrule can be used in conjunction with MPO and 
other MT based connectors.  However, by eliminating the need for physical contact via 
the use of collimated light beams, the connection force per ferrule required is greatly 
reduced, paving the way for high ferrule counts and mass insertion of dense optical 
backplanes.  
Mated pairs of the new ferrule were tested for insertion loss with the substitution method 
and all channels were <1dB. 
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1. Background:  Embedded Parallel Optic Active Devices + High Fiber Count Interconnects 
Bandwidth demand, multi-core processor computing capacity, cost, density, and power requirements are driving 
optics into shorter and shorter distance chip to chip communication links. Backplanes for HPC, server, switching 
and routing equipment applications are migrating from electrical to optical signal transmission.  VCSEL speeds of 
10G are now common with standardization activity for 25G VCSEL links already in process.  

Today, low-cost miniature 850 um VCSEL parallel optic embedded modules are available and being installed into 
many equipment solutions for a variety of computing and networking applications.   These next-generation, parallel 
optic modules have been released in footprints as low as 8.2mm X 7.8m [1].  Embedding the optical device in the 
center of the card offers many advantages over traditional card edge mounted pluggable or AOC devices:   First, the 
bandwidth density obtained by aggregating multiple embedded optics at the card edge via dense multi-channel 
optical interconnects eclipses the density obtained by state of the art edge mounted optics.  The chart in figure 1 
illustrates the lane density as a function of equipment bulkhead area when embedded optics are combined with the 
dense MTP® brand MPO connector format.  In addition, by aggregating the Tx/Rx modules close to the ASIC, the 
high speed transmission over copper PCB traces is minimized, signal integrity is enhanced, and the path to VCSEL 
transmission >10Gb/s is greatly simplified.  Furthermore, heat dissipation becomes more easily managed with laser 
devices evenly dispersed throughout the card as opposed to aggregated at the edge of the card. 

 



 

 
Architectu
interconne
multi-fiber
precision a

These trad
structured 
multi-fiber
in addition

 

Multi-fiber
NTT Labo
molded ou
as precisio
environme
range from
endface. 

 

 
Today’s m
interface f
insertion lo

 

res which uti
ct technology 
r bulkhead fee
alignment.   

ditional multi-f
cabling and lo

r ferrules, expa
n to experiment

r ferrules comm
oratories for us
ut of a thermos
on molding tec
ent, the ferrule
m 60-80% by m

most common 
for data centers
oss results for a

Figure 1: 

ilize multiple 
at the card ed

ed through or

fiber ferrules a
onger distance 
anded beam con
tal results for th

2. Tr
monly referred
se in subscribe
etting epoxy m
chnologies adv
s are molded w

mass of the ferr

Fig

applications 
s and central o
a random interm

Channel Densit

embedded pa
dge demarcatio
r blind-mateab

are designed to
applications.  
nnectors, the in
he new interco

raditional Mo
d to as the “MT
er network line
material but mi
vanced.  Due t
with a very hi
rule.  Figure 2 

gure 2: Traditiona

for multi-fiber
offices which 
mate of 24 fibe

ty at the card edg

arallel optic m
on point.  Curr
ble connectors

o support phys
The following
ntegration of le

onnect and futu

onolithic Mu
T ferrule” or “r
es in an outside
grated to a mo
to the need for
igh content of 
highlights the

al MT Ferrule en

r connectors 
require very lo
er, low-loss, m

ge with embedde

modules facil
rently, this par
s which utilize

sical contact o
g sections will 
ens arrays into 
ure activities.  

ulti-Fiber Fer
rectangular ferr
e plant environ

ore environmen
r dimensional 
glass filler.  I

e glass filler ap

ndface appearan

are structured
ow insertion a

multi-mode MT

ed optics 

itate the need
rallel optic dem
e traditional M

of the fiber tips
provide an ov
the new, mono

rrules: 
rule” were orig
nment.  The fe
ntally stable th
stability in th

In fact, the gla
ppearance of a 

 
nce 

d cabling and 
and return loss
T Elite® ferrule

d for dense o
marcation occu
MT ferrules f

s and low loss
verview of trad
olithic ferrule 

ginally develop
errules were in

hermoplastic m
he extreme ope
ass filler conte
polished MT f

external equi
ses.  Figure 3 
e. 

optical 
urs via 
for the 

ses for 
ditional 
design 

ped by 
nitially 

material 
erating 
ent can 
ferrule 

ipment 
shows 

 



Figure 3:  E
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3. Non-Physical Contact Connectors: Expanded Beam 
Expanded beam connectors are a subset of free-space optical interconnects. The “space” between the connectors 
must have a different index from the lens media for refraction to occur. Because of this fundamental rule, expanded 
beam connectors do not touch within the lens aperture. Use of expanded beam technology eliminates the need for 
fiber tip physical contact which ultimately reduces the overall cost of multi-fiber optical cable assembly 
manufacturing. 

As shown in Figure 5, light emitted by the fiber diverges from the fiber tip through a homogenous optical medial to 
the refractive boundary of a lens. Over this distance, the beam diverges based on the NA of the fiber. The lens has an 
aspheric prescription to account for various modes of the beam. The resultant beam has a characteristic beam waist 
at the mating plane between the connectors. Beyond the mating plane, the beam begins to diverge in the far field 
region of propagation, which is collected by the second optic where the beam converges to the receiving fiber tip. 

 
Figure 5: Expanded Beam Connectors 

 

One of the advantages of an expanded beam connection is the lower sensitivity to debris as compared to a traditional 
fiber to fiber interface.  Flux is the measure of radiation through an area for a specified amount of time[9]. In optics, 
the base units for flux are Watts/meter2. A 50µm diameter core fiber has an area of 2 x 103 µm2, while an expanded 
beam described here has a diameter of 180um with a corresponding 2.5 x 104 µm2 area. Consider a 16µm diameter 
dust particle that has landed on the tip of a connector with a uniform power distribution across the emission area. 
This dust particle has a cross-sectional area of 2 x 102 µm2. For a traditional MT ferrule connector, this would 
account for blocking 10% of the light transmission. The effect of the blocked light would be nearly 0.5dB of 
insertion loss between the mated MT pair. For an example expanded beam connector, the effect of the same particle 
reduces to 0.8% light blockage, corresponding 0.035dB.  

Another key advantage of the expanded beam connector is the reduced alignment precision required along the fiber 
axis (Z axis).  Perfect collimation of the emitted beam eliminates all sensitivity of the lens-to-lens distance on 
insertion loss. As shown in Figure 6, the spot size would remain the same regardless of the z-axis gap. 

Figure 6: Insensitivity to Z-axis gap for the Ideally Collimated Lensed Connector 
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applications as well as qualification regimens established by Telcordia for public network environments.  Testing 
compatibility of the ferrule with new and existing MT ferrule based connector platforms will be completed in 2012.   
 

Upon establishment of a successful industry optical backplane interconnect, US Conec will introduce this 
technology to IEC SC 86B to standardize the mechanical interface optical interface of the PRIZM MT™. 
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